Commit f52fbc4b authored by Kevin's avatar Kevin

added age adjusted msm

parent 71f02752
...@@ -120,7 +120,7 @@ rule fit_model_validation_set: ...@@ -120,7 +120,7 @@ rule fit_model_validation_set:
rule model_posteriors: rule model_posteriors:
input: input:
["output/v1.1/data/validation/posteriors/%s/df_posterior_mi_%i_fold_%i.rds" % (m, i, j) ["output/v1.1/data/validation/posteriors/%s/df_posterior_mi_%i_fold_%i.rds" % (m, i, j)
for m in ("locf", "msm", "gp", "gp_nb", "mm", "mm_nb") for m in ("locf", "msm", "msm_age", "gp", "gp_nb", "mm", "mm_nb")
for i in range(1, config["mi_m"] + 1) for i in range(1, config["mi_m"] + 1)
for j in range(1, config["folds"] + 1) for j in range(1, config["folds"] + 1)
] ]
......
#!/usr/bin/env Rscript
library(tidyverse)
library(msm)
args <- commandArgs(trailingOnly = TRUE)
inputfile <- args[[1]]
outputfile <- args[[2]]
config <- yaml::read_yaml("config.yml")
# filter deaths - we use exact times
# GOSE = 2 is too infreqeunt
df_gose <- readRDS(inputfile) %>%
mutate(
Outcomes.DerivedCompositeGOSE = factor(
Outcomes.DerivedCompositeGOSE,
levels = c(1, 3:8, 99), # 2 is too infrequent to be fitted
ordered = TRUE
) %>% as.character %>% as.integer
) %>% select(
gupi,
Outcomes.DerivedCompositeGOSE,
Outcomes.DerivedCompositeGOSEDaysPostInjury
) %>%
arrange(
gupi,
Outcomes.DerivedCompositeGOSEDaysPostInjury
)
# translate to msm formatting
tmp <- df_gose %>%
rbind(tibble( # only predict GOSE at 180 days - takes too long otherwise
gupi = df_gose$gupi %>% unique,
Outcomes.DerivedCompositeGOSEDaysPostInjury = config$t_out_msm + .5, # needed to offset
Outcomes.DerivedCompositeGOSE = 99
)) %>%
arrange(gupi, Outcomes.DerivedCompositeGOSEDaysPostInjury) %>%
mutate(
obstype = ifelse(Outcomes.DerivedCompositeGOSE == 1, 3, 1), # make death exactly observed transition
Outcomes.DerivedCompositeGOSE = factor(
Outcomes.DerivedCompositeGOSE,
levels = c(1, 3:8, 99),
labels = c(1:7, 99)
) %>% as.character %>% as.numeric
) %>%
group_by(gupi, Outcomes.DerivedCompositeGOSEDaysPostInjury) %>%
arrange(gupi, Outcomes.DerivedCompositeGOSEDaysPostInjury) %>%
# remove prediction states where we already have a true one
filter((n() == 1) | (Outcomes.DerivedCompositeGOSE != 99)) %>%
ungroup
# define transition matrix
Q <- matrix(0, nrow = 7, ncol = 7)
for (i in 1:7) {
for (j in 1:7) {
if (i == j - 1 & i != 1) {
Q[i, j] <- 1
}
if (i == j + 1) {
Q[i, j] <- 1
}
}
}
Q[2:7, 1] <- 1 # allow instantaneous deaths
fit <- msm(
Outcomes.DerivedCompositeGOSE ~ Outcomes.DerivedCompositeGOSEDaysPostInjury,
subject = tmp$gupi,
data = tmp,
obstype = tmp$obstype,
gen.inits = TRUE,
qmatrix = Q,
censor = 99,
pci = c(90, 270),
covariates = ~ Subject.Age,
censor.states = 1:7,
control = list(
fnscale = config$fnscale_msm,
maxit = config$maxiter_msm,
trace = 2
)
)
# get fitted values at censored (prediction) states
fitted <- viterbi.msm(fit)
# store posteriors
df_posteriors <- tibble(
gupi = fitted$subject,
t = fitted$time
) %>%
cbind(
fitted$pstate %>% {colnames(.) <- c("1", as.character(3:8)); .}
) %>%
mutate("2" = 0) %>%
filter(t == config$t_out_msm + .5) %>%
mutate(t = config$t_out_msm) %>%
gather(GOSE, probability, as.character(1:8)) %>%
arrange(gupi, t, GOSE)
saveRDS(df_posteriors, outputfile)
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment