Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
GOSe-6mo-imputation-paper
Project overview
Project overview
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Kevin Kunzmann
GOSe-6mo-imputation-paper
Commits
bdafd5db
Commit
bdafd5db
authored
Aug 15, 2019
by
kevin
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
figures update
parent
b0dd68da
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
46 additions
and
41 deletions
+46
-41
manuscript/manuscript.Rmd
manuscript/manuscript.Rmd
+46
-41
No files found.
manuscript/manuscript.Rmd
View file @
bdafd5db
...
...
@@ -564,15 +564,15 @@ compute_summary_measures <- function(df) {
summarize
(
RMSE
=
mean
((
GOSE
-
prediction
)^
2
,
na
.
rm
=
TRUE
)
%>%
sqrt
,
MAE
=
mean
(
abs
(
GOSE
-
prediction
),
na
.
rm
=
TRUE
),
B
ias
=
mean
(
prediction
,
na
.
rm
=
TRUE
)
-
mean
(
GOSE
,
na
.
rm
=
TRUE
),
`
Bias
'
` = mean(prediction > GOSE, na.rm = TRUE) - mean(prediction < GOSE, na.rm = TRUE)
b
ias
=
mean
(
prediction
,
na
.
rm
=
TRUE
)
-
mean
(
GOSE
,
na
.
rm
=
TRUE
),
`
d
-
bias
`
=
mean
(
prediction
>
GOSE
,
na
.
rm
=
TRUE
)
-
mean
(
prediction
<
GOSE
,
na
.
rm
=
TRUE
)
)
%>%
ungroup
%>%
gather
(
error
,
value
,
-
model
,
-
fold
)
%>%
mutate
(
error
=
factor
(
error
,
c
(
"
B
ias",
"
Bias'
",
"
b
ias"
,
"
d-bias
"
,
"MAE"
,
"RMSE"
))
...
...
@@ -663,7 +663,7 @@ The GOSe scale is restricted to 3+ since the imputation is conditional on
an
observed
GOSe
larger
than
1
(
deaths
are
known
and
no
imputation
necessary
)
and
no
GOSe
2
was
observed
.
```{r confusion-matrix-locf, warning=FALSE, message=FALSE, echo=FALSE, fig.cap="
Confusion
matrices
on
LOCF
subset
.
", fig.height=
6
, fig.width=6}
```{
r
confusion
-
matrix
-
locf
,
warning
=
FALSE
,
message
=
FALSE
,
echo
=
FALSE
,
fig
.
cap
=
"Confusion matrices on LOCF subset."
,
fig
.
height
=
3
,
fig
.
width
=
6
}
plot_confusion_matrices
<-
function
(
df_predictions
,
models
,
nrow
=
2
,
legendpos
,
scriptsize
)
{
...
...
@@ -686,7 +686,8 @@ plot_confusion_matrices <- function(df_predictions, models, nrow = 2, legendpos,
ungroup
%>%
mutate
(
model
=
factor
(
model
,
models
))
p_cnf_mtrx_raw <- df_average_confusion_matrices %>%
#
p_cnf_mtrx_raw
<-
df_average_confusion_matrices
%>%
ggplot
(
aes
(`
Observed
GOSE
`,
`
Predicted
GOSE
`,
fill
=
n
))
+
geom_raster
(
fill
=
"white"
)
+
geom_text
(
aes
(
...
...
@@ -710,28 +711,28 @@ plot_confusion_matrices <- function(df_predictions, models, nrow = 2, legendpos,
facet_wrap
(~
model
,
nrow
=
nrow
)
+
ggtitle
(
"Average confusion matrix across folds (absolute counts)"
)
p_cnf_mtrx_colnrm <- df_average_confusion_matrices %>%
group_by(model, `Observed GOSE`) %>%
mutate(
`fraction (column)` = n / sum(n),
`fraction (column)` = ifelse(is.nan(`fraction (column)`), 0, `fraction (column)`)
) %>%
ggplot(aes(`Observed GOSE`, `Predicted GOSE`, fill = `fraction (column)`)) +
geom_raster() +
geom_hline(yintercept = c(2, 4, 6) + .5, color = "
black
") +
geom_vline(xintercept = c(2, 4, 6) + .5, color = "
black
") +
scale_fill_gradient("", low = "
white
", high = "
black
", limits = c(0, 1)) +
coord_fixed(expand = FALSE) +
labs(x = "
observed
GOSe
", y = "
imputed
GOSe
", fill = "") +
theme_bw() +
theme(
panel.grid = element_blank(),
legend.position = legendpos
) +
facet_wrap(~model, nrow = nrow) +
ggtitle("
Average
confusion
matrix
across
folds
(
column
fraction
)
")
cowplot::plot_grid(p_cnf_mtrx_raw, p_cnf_mtrx_colnrm, ncol = 1, align = "
h
")
#
p_cnf_mtrx_colnrm
<-
df_average_confusion_matrices
%>%
#
group_by
(
model
,
`
Observed
GOSE
`)
%>%
#
mutate
(
#
`
fraction
(
column
)`
=
n
/
sum
(
n
),
#
`
fraction
(
column
)`
=
ifelse
(
is
.
nan
(`
fraction
(
column
)`),
0
,
`
fraction
(
column
)`)
#
)
%>%
#
ggplot
(
aes
(`
Observed
GOSE
`,
`
Predicted
GOSE
`,
fill
=
`
fraction
(
column
)`))
+
#
geom_raster
()
+
#
geom_hline
(
yintercept
=
c
(
2
,
4
,
6
)
+
.5
,
color
=
"black"
)
+
#
geom_vline
(
xintercept
=
c
(
2
,
4
,
6
)
+
.5
,
color
=
"black"
)
+
#
scale_fill_gradient
(
""
,
low
=
"white"
,
high
=
"black"
,
limits
=
c
(
0
,
1
))
+
#
coord_fixed
(
expand
=
FALSE
)
+
#
labs
(
x
=
"observed GOSe"
,
y
=
"imputed GOSe"
,
fill
=
""
)
+
#
theme_bw
()
+
#
theme
(
#
panel
.
grid
=
element_blank
(),
#
legend
.
position
=
legendpos
#
)
+
#
facet_wrap
(~
model
,
nrow
=
nrow
)
+
#
ggtitle
(
"Average confusion matrix across folds (column fraction)"
)
#
cowplot
::
plot_grid
(
p_cnf_mtrx_raw
,
p_cnf_mtrx_colnrm
,
ncol
=
1
,
align
=
"h"
)
}
plot_confusion_matrices
(
...
...
@@ -743,8 +744,8 @@ plot_confusion_matrices(
scriptsize
=
2.5
)
ggsave(filename = "
confusion_matrices_locf
.
pdf
", width = 6, height =
6
)
ggsave(filename = "
confusion_matrices_locf
.
png
", width = 6, height =
6
)
ggsave
(
filename
=
"confusion_matrices_locf.pdf"
,
width
=
6
,
height
=
3
)
ggsave
(
filename
=
"confusion_matrices_locf.png"
,
width
=
6
,
height
=
3
)
```
The
absolute
-
count
confusion
matrices
show
that
most
imputed
values
are
...
...
@@ -772,8 +773,8 @@ plot_summary_measures_cond <- function(df_predictions, models, label) {
summarize
(
RMSE
=
mean
((
GOSE
-
prediction
)^
2
,
na
.
rm
=
TRUE
)
%>%
sqrt
,
MAE
=
mean
(
abs
(
GOSE
-
prediction
),
na
.
rm
=
TRUE
),
B
ias = mean(prediction, na.rm = TRUE) - mean(GOSE, na.rm = TRUE),
`
Bias'
` = mean(prediction > GOSE, na.rm = TRUE) - mean(prediction < GOSE, na.rm = TRUE)
b
ias
=
mean
(
prediction
,
na
.
rm
=
TRUE
)
-
mean
(
GOSE
,
na
.
rm
=
TRUE
),
`
d
-
bias
`
=
mean
(
prediction
>
GOSE
,
na
.
rm
=
TRUE
)
-
mean
(
prediction
<
GOSE
,
na
.
rm
=
TRUE
)
)
%>%
gather
(
error
,
value
,
-
model
,
-
GOSE
,
-
fold
)
%>%
group_by
(
GOSE
,
model
,
error
,
fold
)
%>%
...
...
@@ -789,20 +790,24 @@ plot_summary_measures_cond <- function(df_predictions, models, label) {
mutate
(
model
=
factor
(
model
,
models
),
error
=
factor
(
error
,
c
(
"
B
ias
",
"
Bias
'
",
"
b
ias"
,
"
d-bias
"
,
"MAE"
,
"RMSE"
))
)
%>%
ggplot
(
aes
(
GOSE
,
color
=
model
))
+
geom_hline
(
yintercept
=
0
,
color
=
"black"
)
+
geom_line(aes(y = mean)) +
geom_line
(
aes
(
y
=
mean
),
alpha
=
.5
)
+
geom_point
(
aes
(
y
=
mean
),
size
=
.3
,
position
=
position_dodge
(
.2
))
+
geom_errorbar
(
aes
(
ymin
=
mean
-
1.96
*
se
,
ymax
=
mean
+
1.96
*
se
),
width = .
2
,
position = position_dodge(.33)
,
size = 1
width
=
.
33
,
size
=
.5
,
position
=
position_dodge
(
.2
)
)
+
geom_point
(
aes
(
y
=
mean
),
position
=
position_dodge
(
.2
))
+
xlab
(
"observed GOSe"
)
+
facet_wrap
(~
error
,
nrow
=
1
)
+
scale_y_continuous
(
name
=
""
,
breaks
=
seq
(-
2
,
8
,
.5
))
+
...
...
@@ -824,7 +829,7 @@ plot_summary_measures_cond(
)
ggsave
(
filename
=
"errors_stratified_locf.pdf"
,
width
=
6
,
height
=
3.5
)
ggsave(filename = "errors_stratified_locf.png", width = 6, height = 3.5)
ggsave
(
filename
=
"errors_stratified_locf.png"
,
width
=
6
,
height
=
3.5
,
scale
=
1.25
)
```
Just
as
with
the
overall
performance
,
differences
are
most
pronounced
in
terms
...
...
@@ -879,8 +884,8 @@ plot_confusion_matrices(
scriptsize
=
3
)
ggsave(filename = "confusion_matrices_all.pdf", width = 6, height =
6
)
ggsave(filename = "confusion_matrices_all.png", width = 6, height =
6
)
ggsave
(
filename
=
"confusion_matrices_all.pdf"
,
width
=
6
,
height
=
3
)
ggsave
(
filename
=
"confusion_matrices_all.png"
,
width
=
6
,
height
=
3
)
```
...
...
@@ -893,7 +898,7 @@ plot_summary_measures_cond(
)
ggsave
(
filename
=
"imputation_error.pdf"
,
width
=
6
,
height
=
3.5
)
ggsave(filename = "imputation_error.png", width = 6, height = 3.5)
ggsave
(
filename
=
"imputation_error.png"
,
width
=
6
,
height
=
3.5
,
scale
=
1.25
)
```
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment