Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
ICP burden
Project overview
Project overview
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Cecilia Akerlund
ICP burden
Commits
91613438
Commit
91613438
authored
Jun 11, 2024
by
Cecilia Akerlund
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
28a2dfed
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
297 additions
and
0 deletions
+297
-0
ICP_burden_finalfigs.R
ICP_burden_finalfigs.R
+297
-0
No files found.
ICP_burden_finalfigs.R
0 → 100644
View file @
91613438
# Creates figures for the manuscript
rm
(
list
=
ls
())
library
(
ggplot2
)
library
(
gridExtra
)
library
(
dplyr
)
library
(
tidyr
)
library
(
heatwaveR
)
library
(
ggpubr
)
library
(
ggsci
)
library
(
RColorBrewer
)
library
(
grid
)
nas
=
c
(
NA
,
""
)
f
<-
"C:/Users/Cecilia KI/Dropbox/Cecilia/ICP burden/ICP_tempdata/200625/"
jet.colors
<-
colorRampPalette
(
c
(
"#00007F"
,
"blue"
,
"#007FFF"
,
"cyan"
,
"#7FFF7F"
,
"yellow"
,
"#FF7F00"
,
"red"
))
#, "#7F0000"))
load
(
file
=
paste0
(
f
,
"PTD.RData"
))
load
(
paste0
(
f
,
"Corr.list.RData"
))
Corr_bootstraps.GOSE
<-
read.csv
(
paste0
(
f
,
"Corr_bootstraps.GOSE6mo.df.10.csv"
),
stringsAsFactors
=
FALSE
)
Autoregtimes
<-
read.csv
(
paste0
(
f
,
"Autoregtimes.csv"
),
stringsAsFactors
=
FALSE
,
na.strings
=
nas
)
ms
<-
read.csv
(
"C:/Users/Cecilia KI/Dropbox/Cecilia/ICP burden/ms.new_200625.csv"
,
na.strings
=
nas
,
stringsAsFactors
=
FALSE
)
ms
<-
ms
%>%
mutate
(
datetime
=
as.POSIXct
(
datetime
),
gupi
=
as.factor
(
gupi
),
GOS
=
as.factor
(
GOS
),
GOSE6mo
=
as.factor
(
GOSE6mo
))
ms
<-
ms
%>%
mutate
(
icp
=
ifelse
(
is.na
(
icp
),
icp.evd
,
icp
))
ms
<-
ms
%>%
group_by
(
gupi
)
%>%
mutate
(
monitor.time
=
as.numeric
(
difftime
(
max
(
datetime
),
min
(
datetime
),
units
=
"days"
)))
Baseline
<-
read.csv
(
"C:/Users/Cecilia KI/Dropbox/Cecilia/ICP burden/Baseline.new_200625.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
nas
)
#Created in script ICP_burden_hypothermia_preparation_190607.csv
Baseline
<-
Baseline
%>%
mutate
(
Mort90d
=
as.factor
(
ifelse
(
as.Date
(
DeathDate
)
<=
as.Date
(
"1970-01-01"
)
+
90
,
1
,
0
)),
Mort6mo
=
as.factor
(
ifelse
(
as.Date
(
DeathDate
)
<=
as.Date
(
"1970-01-01"
)
+
180
,
1
,
0
)),
Outcome
=
as.factor
(
ifelse
(
as.integer
(
GOSE6mo
)
<=
4
,
"UNFAV"
,
ifelse
(
as.integer
(
GOSE6mo
)
>
4
,
"FAV"
,
NA
))),
GOSE6mo
=
as.factor
(
GOSE6mo
))
Baseline
$
Mort90d
[
is.na
(
Baseline
$
Mort90d
)]
<-
0
Baseline
$
Mort6mo
[
is.na
(
Baseline
$
Mort6mo
)]
<-
0
Baseline
<-
Baseline
%>%
mutate
(
Mort6mo
=
ifelse
(
Mort6mo
==
1
,
"Yes"
,
"No"
))
events_all
<-
read.csv
(
paste0
(
f
,
"events_all_200625.csv"
),
stringsAsFactors
=
FALSE
,
na.strings
=
nas
)
events_all
<-
left_join
(
events_all
,
select
(
Baseline
,
gupi
,
GOSE6mo
,
GOSE6mo.derived
,
GOS
,
ICPDevice
,
DecompressiveCran
),
by
=
"gupi"
)
Corrplots
<-
function
(
Corrtemp
,
title
,
alfa
)
{
corr.n_plot
<-
ggplot
(
Corrtemp
,
aes
(
x
=
icp.threshold
,
y
=
time.threshold
,
z
=
corr.n
,
fill
=
corr.n
))
+
geom_raster
(
interpolate
=
TRUE
,
alpha
=
alfa
)
+
geom_contour
(
color
=
"grey"
,
alpha
=
0.5
,
size
=
0.5
)
+
stat_contour
(
breaks
=
c
(
0
),
size
=
1
,
colour
=
"black"
)
+
scale_fill_gradientn
(
colours
=
rev
(
jet.colors
(
100
)),
limits
=
c
(
-1
,
1
),
name
=
"Correlation"
,
guide
=
guide_colorbar
(
reverse
=
TRUE
))
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
#, text = element_text(size = 14)) +
xlab
(
"Intensity greater than (mmHg)"
)
+
ylab
(
"Duration greater than (mins)"
)
+
ggtitle
(
title
)
return
(
corr.n_plot
)
}
# Generate plot with SD:
Corrplots2
<-
function
(
Corrtemp
,
title
,
alfa
,
sdwidth
)
{
Corrtemp
<-
Corrtemp
%>%
mutate
(
tl.high
=
corr.n
+
sdwidth
*
sd.corr
,
tl.low
=
corr.n
-
sdwidth
*
sd.corr
)
#Corrtemp <- Corrtemp %>% mutate(tl.high = ifelse()
corr.n_plot
<-
ggplot
(
Corrtemp
,
aes
(
x
=
icp.threshold
,
y
=
time.threshold
,
z
=
corr.n
,
fill
=
corr.n
))
+
geom_raster
(
interpolate
=
TRUE
,
alpha
=
alfa
)
+
geom_contour
(
color
=
"grey"
,
alpha
=
0.5
,
size
=
0.5
)
+
stat_contour
(
breaks
=
c
(
0
),
size
=
1
,
colour
=
"black"
)
+
stat_contour
(
breaks
=
c
(
0
),
size
=
1
,
aes
(
x
=
icp.threshold
,
y
=
time.threshold
,
z
=
tl.low
),
colour
=
"grey"
)
+
stat_contour
(
breaks
=
c
(
0
),
size
=
1
,
aes
(
x
=
icp.threshold
,
y
=
time.threshold
,
z
=
tl.high
),
colour
=
"white"
)
+
scale_fill_gradientn
(
colours
=
rev
(
jet.colors
(
100
)),
limits
=
c
(
-1
,
1
),
name
=
"Correlation"
,
guide
=
guide_colorbar
(
reverse
=
TRUE
))
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
#, text = element_text(size = 14)) +
xlab
(
"Intensity greater than (mmHg)"
)
+
ylab
(
"Duration greater than (mins)"
)
+
ggtitle
(
paste0
(
title
,
", "
,
"+-"
,
sdwidth
,
" SD"
))
return
(
corr.n_plot
)
}
# -----------------------------------------------------
# colors <- scale_color_manual(values=brewer.pal(n=8, name="Spectral"))
Thresholds
<-
c
(
0
,
10
,
15
,
20
,
25
,
30
)
# dev.new()
# print(ggplot(PTD$tot$PTD.long %>% filter(Threshold %in% Thresholds), aes(x=mmHgH)) + geom_histogram() + facet_wrap(~Threshold, scales="free_x"))
g
<-
"C:/Users/Cecilia KI/Dropbox/Cecilia/ICP burden/Manuscript/PLOS submission/Revision/Figures/"
# Figure 1: ICP profile of one patient:
temp
<-
ms
%>%
filter
(
gupi
==
unique
(
ms
$
gupi
)[
9
])
%>%
mutate
(
Days
=
difftime
(
datetime
,
"1970-01-01 00:00"
,
units
=
"days"
))
tiff
(
file
=
paste0
(
g
,
"Fig1.tiff"
),
width
=
5.2
,
height
=
3
,
units
=
'in'
,
res
=
300
)
print
(
ggplot
(
temp
,
aes
(
x
=
Days
,
y
=
icp
,
y2
=
10
))
+
geom_flame
(
fill
=
"deepskyblue"
,
alpha
=
0.5
)
+
geom_line
(
size
=
0.1
)
+
geom_hline
(
yintercept
=
10
,
size
=
0.5
)
+
ylim
(
0
,
max
(
temp
$
icp
))
+
xlim
(
2
,
max
(
temp
$
Days
))
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
xlab
(
"Days post injury"
)
+
ylab
(
"ICP"
))
# +
#text = element_text(size = 14), axis.text = element_text(size=14))
#ggtitle("ICP monitoring from one patient") +
dev.off
()
# Fig 2: GOSE distributions:
tiff
(
file
=
paste0
(
g
,
"Fig2.tiff"
),
width
=
2.63
,
height
=
2.63
,
units
=
'in'
,
res
=
300
)
print
(
ggplot
(
Baseline
,
aes
(
GOSE6mo
))
+
geom_bar
(
fill
=
"darkgrey"
)
+
xlab
(
"GOS-E score at 6 months"
)
+
ylab
(
"Count"
)
+
scale_x_discrete
(
limits
=
c
(
1
:
8
))
+
theme_minimal
())
#+
#theme(legend.title = element_text(face="italic")), text = element_text(size = 14))
dev.off
()
# Fig 3:
tiff
(
file
=
paste0
(
g
,
"Fig3.tiff"
),
width
=
7.5
,
height
=
4
,
units
=
'in'
,
res
=
300
)
ggarrange
(
Corrplots
(
Corr.list
$
ICP
$
All
,
paste0
(
"A. All patients, n="
,
nrow
(
Baseline
)),
1
),
Corrplots2
(
Corr.list
$
ICP
$
Bootstraps
$
All
,
"B. 1000 bootstraps"
,
1
,
2
),
nrow
=
1
,
common.legend
=
TRUE
,
legend
=
"right"
)
dev.off
()
# Fig 4:
tiff
(
file
=
paste0
(
g
,
"Fig4.tiff"
),
width
=
7.5
,
height
=
4
,
units
=
'in'
,
res
=
300
)
#dev.new()
ggarrange
(
Corrplots
(
Corr.list
$
ICP
$
PRxBelow0.3
,
"A. Intact autoregulation"
,
1
),
Corrplots
(
Corr.list
$
ICP
$
PRxAbove0.3
,
"B. Impaired autoregulation"
,
1
),
nrow
=
1
,
common.legend
=
TRUE
,
legend
=
"right"
)
dev.off
()
# Fig 5:
tiff
(
file
=
paste0
(
g
,
"Fig5.tiff"
),
width
=
2.63
,
height
=
2.63
,
units
=
'in'
,
res
=
300
)
print
(
ggplot
(
Autoregtimes
,
aes
(
x
=
n
,
y
=
Activetime
/
Monitortime
))
+
geom_line
()
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
xlim
(
0
,
200
)
+
xlab
(
"Patient number"
)
+
ylab
(
"Time with intact autoregulation\n /Total monitoring time"
))
dev.off
()
# Fig 6, PTD stratified per GOSE:
tiff
(
file
=
paste0
(
g
,
"Fig6.tiff"
),
width
=
5.2
,
height
=
3
,
units
=
'in'
,
res
=
300
)
print
(
ggplot
(
data
=
PTD
$
tot
$
PTD.GOSE
,
aes
(
Threshold
,
mean.mmHgH
,
group
=
GOSE6mo
,
color
=
GOSE6mo
))
+
geom_line
()
+
scale_color_manual
(
values
=
rev
(
jet.colors
(
8
)),
name
=
"6 month GOS-E"
)
+
#scale_color_brewer(palette="RdYlBu") +
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
#, text=element_text(size=12), axis.text=element_text(size = 14)) +
#xlim(0,30) +
#ggtitle("Mean PTD stratified by 6-month outcome") +
xlab
(
"ICP threshold (mmHg)"
)
+
ylab
(
"PTD (mmHg·h), mean"
))
dev.off
()
# Fig 7: Mean PTD, favourable/unfavourable outcome:
PTD.fav.plot
<-
ggplot
(
PTD
$
tot
$
PTD.FAV
,
aes
(
x
=
Threshold
,
y
=
mean.mmHgH
,
color
=
Outcome
))
+
geom_line
()
+
scale_color_manual
(
values
=
c
(
"deepskyblue"
,
"orange3"
),
name
=
"Outcome"
)
+
# scale_color_brewer(palette="Accent", name="Outcome") +
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
ggtitle
(
"A. Favourable vs Unfavourable outcome"
)
+
xlab
(
"ICP threshold"
)
+
ylab
(
"PTD (Mean mmHg·h)"
)
PTD.mort.plot
<-
ggplot
(
PTD
$
tot
$
PTD.Mort
,
aes
(
x
=
Threshold
,
y
=
mean.mmHgH
,
color
=
Mort6mo
))
+
geom_line
()
+
scale_color_manual
(
values
=
c
(
"darkgreen"
,
"red"
),
name
=
"6 month mortality"
)
+
#labs(color = "6 month mortality") +
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
ggtitle
(
"B. 6 month mortality"
)
+
xlab
(
"ICP threshold"
)
+
ylab
(
"PTD (Mean mmHg·h)"
)
tiff
(
file
=
paste0
(
g
,
"Fig7.tiff"
),
width
=
7.5
,
height
=
3
,
units
=
'in'
,
res
=
300
)
ggarrange
(
PTD.fav.plot
,
PTD.mort.plot
,
ncol
=
2
)
#, common.legend = TRUE, legend="right")
dev.off
()
# Fig 8:
Active.Fav.plot
<-
ggplot
(
PTD
$
active
$
PTD.FAV
,
aes
(
x
=
Threshold
,
y
=
mean.mmHgH
,
color
=
Outcome
))
+
geom_line
()
+
scale_color_manual
(
values
=
c
(
"deepskyblue"
,
"orange3"
),
name
=
"Outcome"
)
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
ggtitle
(
"A. Intact autoregulation"
)
+
xlab
(
"ICP threshold"
)
+
ylab
(
"PTD (Mean mmHg·h)"
)
Passive.Fav.plot
<-
ggplot
(
PTD
$
passive
$
PTD.FAV
,
aes
(
x
=
Threshold
,
y
=
mean.mmHgH
,
color
=
Outcome
))
+
geom_line
()
+
scale_color_manual
(
values
=
c
(
"deepskyblue"
,
"orange3"
),
name
=
"Outcome"
)
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
ggtitle
(
"B. Impaired autoregulation"
)
+
xlab
(
"ICP threshold"
)
+
ylab
(
"PTD (Mean mmHg·h)"
)
Active.Mort.plot
<-
ggplot
(
PTD
$
active
$
PTD.Mort
,
aes
(
x
=
Threshold
,
y
=
mean.mmHgH
,
color
=
Mort6mo
))
+
geom_line
()
+
scale_color_manual
(
values
=
c
(
"darkgreen"
,
"red"
),
name
=
"Mortality"
)
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
ggtitle
(
"C. Intact autoregulation"
)
+
xlab
(
"ICP threshold"
)
+
ylab
(
"PTD (Mean mmHg·h)"
)
Passive.Mort.plot
<-
ggplot
(
PTD
$
passive
$
PTD.Mort
,
aes
(
x
=
Threshold
,
y
=
mean.mmHgH
,
color
=
Mort6mo
))
+
geom_line
()
+
scale_color_manual
(
values
=
c
(
"darkgreen"
,
"red"
),
name
=
"Mortality"
)
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
ggtitle
(
"D. Impaired autoregulation"
)
+
xlab
(
"ICP threshold"
)
+
ylab
(
"PTD (Mean mmHg·h)"
)
tiff
(
file
=
paste0
(
g
,
"Fig8.tiff"
),
width
=
6
,
height
=
6
,
units
=
'in'
,
res
=
300
)
ggarrange
(
annotate_figure
(
ggarrange
(
Active.Fav.plot
,
Passive.Fav.plot
,
ncol
=
2
,
common.legend
=
TRUE
,
legend
=
"right"
),
top
=
text_grob
(
"Favourable vs Unfavourable outcome"
,
face
=
"bold"
)),
annotate_figure
(
ggarrange
(
Active.Mort.plot
,
Passive.Mort.plot
,
ncol
=
2
,
common.legend
=
TRUE
,
legend
=
"right"
),
top
=
text_grob
(
"6 month mortality"
,
face
=
"bold"
)),
nrow
=
2
)
dev.off
()
# Supplement Fig 1:
tiff
(
file
=
paste0
(
g
,
"S1_Fig.tiff"
),
width
=
7.5
,
height
=
3
,
units
=
'in'
,
res
=
300
)
print
(
Corrplots
(
Corr_bootstraps.GOSE
,
"Ten randomly selected bootstraps"
,
1
)
+
facet_wrap
(
~
bootstrap
,
nrow
=
2
))
dev.off
()
# Supplement Fig 2:
NoEVDDC
<-
length
(
unique
((
events_all
%>%
filter
(
!
gupi
%in%
unique
(
filter
(
ms
,
!
is.na
(
icp.evd
))
$
gupi
),
gupi
%in%
filter
(
Baseline
,
DecompressiveCran
==
0
)
$
gupi
))
$
gupi
))
tiff
(
file
=
paste0
(
g
,
"S2_Fig.tiff"
),
width
=
7.5
,
height
=
7.5
,
units
=
'in'
,
res
=
300
)
ggarrange
(
Corrplots
(
Corr.list
$
ICP
$
All
,
paste0
(
"A. All patients, n="
,
nrow
(
Baseline
)),
1
),
Corrplots
(
Corr.list
$
ICP
$
NoDC
$
All
,
paste0
(
"B. No DC, n="
,
nrow
(
Baseline
%>%
filter
(
DecompressiveCran
==
0
))),
1
),
Corrplots
(
Corr.list
$
ICP
$
NoEVD
$
All
,
paste0
(
"C. No EVD, n="
,
length
(
unique
(
ms
$
gupi
))
-
length
(
unique
(
filter
(
ms
,
!
is.na
(
icp.evd
))
$
gupi
))),
1
),
Corrplots
(
Corr.list
$
ICP
$
NoDCNoEVD
$
All
,
paste0
(
"D. No EVD, no DC, n="
,
NoEVDDC
),
1
),
nrow
=
2
,
ncol
=
2
,
common.legend
=
TRUE
,
legend
=
"right"
)
dev.off
()
# Supplement Fig 3, GOS:
tiff
(
file
=
paste0
(
g
,
"S3_Fig.tiff"
),
width
=
7.5
,
height
=
7.5
,
units
=
'in'
,
res
=
300
)
ggarrange
(
Corrplots
(
Corr.list
$
GOS
$
ICP
$
All
%>%
filter
(
icp.threshold
>=
10
,
time.threshold
>=
5
),
title
=
paste0
(
"A. GOS, n="
,
length
(
unique
(
Baseline
$
gupi
))),
alfa
=
1
),
Corrplots
(
Corr.list
$
GOS
$
ICP
$
PRxBelow0.3
%>%
filter
(
icp.threshold
>=
10
,
time.threshold
>=
5
),
title
=
"B. GOS, Active autoregulation"
,
alfa
=
1
),
Corrplots
(
Corr.list
$
GOS
$
ICP
$
PRxAbove0.3
%>%
filter
(
icp.threshold
>=
10
,
time.threshold
>=
5
),
title
=
"C. GOS, Passive autoregulation"
,
alfa
=
1
),
nrow
=
2
,
ncol
=
2
,
common.legend
=
TRUE
,
legend
=
"right"
)
dev.off
()
# Suppl Fig 4, distr of monitoring time:
tiff
(
file
=
paste0
(
g
,
"S4_Fig.tiff"
),
width
=
5.2
,
height
=
4
,
units
=
'in'
,
res
=
300
)
distr
<-
ggplot
(
data
=
Baseline
,
aes
(
x
=
monitor.time
,
fill
=
Mort6mo
))
+
geom_histogram
(
alpha
=
0.5
)
+
scale_fill_manual
(
values
=
c
(
"darkgreen"
,
"red"
),
name
=
"6 Month Mortality"
)
+
scale_x_continuous
(
name
=
"Monitoring time (days)"
)
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
print
(
distr
)
dev.off
()
# Supplement Fig 5, Distribution of PTD:
tiff
(
file
=
paste0
(
g
,
"S5_Fig.tiff"
),
width
=
7.5
,
height
=
5
,
units
=
'in'
,
res
=
300
)
distr
<-
ggplot
(
data
=
PTD
$
tot
$
PTD.long
%>%
filter
(
Threshold
%in%
Thresholds
),
aes
(
x
=
mmHgH
,
fill
=
as.factor
(
Mort6mo
)))
+
geom_histogram
(
alpha
=
0.5
)
+
scale_fill_manual
(
values
=
c
(
"darkgreen"
,
"red"
),
name
=
"6 month mortality"
)
+
facet_wrap
(
~
Threshold
,
scales
=
"free"
)
+
theme_minimal
()
+
theme
(
legend.title
=
element_text
(
face
=
"italic"
))
+
xlab
(
"PTD (mmHg·h)"
)
print
(
distr
)
dev.off
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment