Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
ICP burden
Project overview
Project overview
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Cecilia Akerlund
ICP burden
Commits
048d87d1
Commit
048d87d1
authored
9 months ago
by
Cecilia Akerlund
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
91613438
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
168 additions
and
0 deletions
+168
-0
ICP_burden_multivar_201006.R
ICP_burden_multivar_201006.R
+168
-0
No files found.
ICP_burden_multivar_201006.R
0 → 100644
View file @
048d87d1
rm
(
list
=
ls
())
library
(
dplyr
)
library
(
tidyr
)
library
(
ggplot2
)
library
(
gridExtra
)
nas
<-
c
(
""
,
NA
)
f
<-
"C:/Users/Cecilia KI/Dropbox/Cecilia/ICP burden/ICP_tempdata/"
Baseline
<-
read.csv
(
"C:/Users/Cecilia KI/Dropbox/Cecilia/ICP burden/Baseline.new_200625.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
nas
)
#Created in script ICP_burden_preparation_200225.csv
Baseline
<-
Baseline
%>%
mutate
(
Mort6mo
=
ifelse
(
GOSE6mo
==
1
,
1
,
0
),
Outcome
=
as.factor
(
ifelse
(
GOSE6mo
%in%
c
(
1
,
2
,
3
,
4
),
"UNFAV"
,
"FAV"
)),
icp.mean
=
ifelse
(
is.na
(
icp.mean
),
icp.evd.mean
,
icp.mean
),
icp.median
=
ifelse
(
is.na
(
icp.median
),
icp.evd.median
,
icp.median
),
cpp.mean
=
ifelse
(
is.na
(
cpp.mean
),
cpp.evd.mean
,
cpp.mean
),
cpp.median
=
ifelse
(
is.na
(
cpp.median
),
cpp.evd.median
,
cpp.median
))
load
(
file
=
paste0
(
f
,
"200625/PTD.RData"
))
# TIL.max added as predictor: ---------------------------------------------------------------------------------------
# Logistic regression model for time in red zone: ----
# Univariate regression:
uni.rz.outcome
<-
glm
(
Outcome
~
rz
,
family
=
binomial
(),
data
=
Baseline
)
exp
(
uni.rz.outcome
$
coefficients
)
#OR
exp
(
confint
(
uni.rz.outcome
))
# confidence interval 95%
summary
(
uni.rz.outcome
)
$
coefficients
[
2
,
4
]
# p value
uni.rz.mort
<-
glm
(
Mort6mo
~
rz
,
family
=
binomial
(),
data
=
Baseline
)
exp
(
uni.rz.mort
$
coefficients
)
exp
(
confint
(
uni.rz.mort
))
summary
(
uni.rz.mort
)
$
coefficients
[
2
,
4
]
# 6 month mortality / unfav/fav outcome:
mort.model
<-
glm
(
data
=
Baseline
,
Mort6mo
~
rz
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
binomial
())
fav.model
<-
glm
(
Outcome
~
rz
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
)
summary
(
mort.model
)
summary
(
fav.model
)
OR.mort
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
mort.model
),
confint
(
mort.model
)))),
2
)
OR.mort
$
p
<-
round
(
summary
(
mort.model
)
$
coefficients
[,
4
],
3
)
OR.mort
<-
OR.mort
%>%
mutate
(
Variable
=
rownames
(
OR.mort
),
"OR, 95% CI"
=
paste0
(
OR
,
" ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
OR.fav
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
fav.model
),
confint
(
fav.model
)))),
2
)
OR.fav
$
p
<-
round
(
summary
(
fav.model
)
$
coefficients
[,
4
],
3
)
OR.fav
<-
OR.fav
%>%
mutate
(
Variable
=
rownames
(
OR.fav
),
"OR, 95% CI"
=
paste0
(
OR
,
" ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
View
(
OR.mort
)
View
(
OR.fav
)
# Time in red zone above +2sd:
mort.model
<-
glm
(
data
=
Baseline
,
Mort6mo
~
rz.ub
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
binomial
())
fav.model
<-
glm
(
Outcome
~
rz.ub
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
)
OR.mort.ub
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
mort.model
),
confint
(
mort.model
)))),
2
)
OR.mort.ub
$
p
<-
round
(
summary
(
mort.model
)
$
coefficients
[,
4
],
3
)
OR.mort.ub
<-
OR.mort.ub
%>%
mutate
(
Variable
=
rownames
(
OR.mort.ub
),
"OR, 95% CI"
=
paste0
(
OR
,
" ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
OR.fav.ub
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
fav.model
),
confint
(
fav.model
)))),
2
)
OR.fav.ub
$
p
<-
round
(
summary
(
fav.model
)
$
coefficients
[,
4
],
3
)
OR.fav.ub
<-
OR.fav.ub
%>%
mutate
(
Variable
=
rownames
(
OR.fav.ub
),
"OR, 95% CI"
=
paste0
(
OR
,
" ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
View
(
OR.mort.ub
)
View
(
OR.fav.ub
)
# Multivariate logistic regression model: ----------------------------------
# Add to baseline, PTD active/passive/tot at thresholds
Thresholds
<-
c
(
0
,
10
,
15
,
20
,
25
,
30
)
# View(PTD$tot$PTD.long)
PTD.tot
<-
spread
(
PTD
$
tot
$
PTD.long
%>%
select
(
gupi
,
Threshold
,
mmHgH
)
%>%
filter
(
Threshold
%in%
Thresholds
),
Threshold
,
mmHgH
)
colnames
(
PTD.tot
)[
2
:
7
]
<-
paste0
(
"PTD.tot."
,
colnames
(
PTD.tot
[
2
:
7
]))
PTD.active
<-
spread
(
PTD
$
active
$
PTD.long
%>%
select
(
gupi
,
Threshold
,
mmHgH
)
%>%
filter
(
Threshold
%in%
Thresholds
),
Threshold
,
mmHgH
)
colnames
(
PTD.active
)[
2
:
7
]
<-
paste0
(
"PTD.active."
,
colnames
(
PTD.active
[
2
:
7
]))
PTD.passive
<-
spread
(
PTD
$
passive
$
PTD.long
%>%
select
(
gupi
,
Threshold
,
mmHgH
)
%>%
filter
(
Threshold
%in%
Thresholds
),
Threshold
,
mmHgH
)
colnames
(
PTD.passive
)[
2
:
7
]
<-
paste0
(
"PTD.passive."
,
colnames
(
PTD.passive
[
2
:
7
]))
Baseline
<-
left_join
(
Baseline
,
PTD.tot
,
by
=
"gupi"
)
Baseline
<-
left_join
(
Baseline
,
PTD.active
,
by
=
"gupi"
)
Baseline
<-
left_join
(
Baseline
,
PTD.passive
,
by
=
"gupi"
)
# OR: ---------------
OR.fcn
<-
function
(
x
)
{
y
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
x
),
conf.int
=
confint
(
x
)))),
5
)
y
<-
y
%>%
mutate
(
Variable
=
rownames
(
y
),
p
=
round
(
summary
(
x
)
$
coefficients
[,
4
],
3
))
y
<-
y
%>%
mutate
(
"OR, 95% CI"
=
paste0
(
OR
,
", ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
return
(
y
)
}
OR.list
<-
list
()
exp
(
summary
(
glm
(
Mort6mo
~
PTD.tot.0
,
data
=
Baseline
,
family
=
binomial
()))
$
coef
)
mean
((
Baseline
%>%
filter
(
Mort6mo
==
0
))
$
PTD.tot.0
,
na.rm
=
TRUE
)
# Total PTD:
OR.list
$
Mort6mo
$
PTD.tot
$
'0'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'10'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'15'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'20'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'25'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'30'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Active PTD:
OR.list
$
Mort6mo
$
PTD.active
$
'0'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'10'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'15'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'20'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'25'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'30'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Passive PTD:
OR.list
$
Mort6mo
$
PTD.passive
$
'0'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'10'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'15'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'20'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'25'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'30'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Total PTD:
OR.list
$
Outcome
$
PTD.tot
$
'0'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'10'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'15'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'20'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'25'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'30'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Active PTD:
OR.list
$
Outcome
$
PTD.active
$
'0'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'10'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'15'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'20'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'25'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'30'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Passive PTD:
OR.list
$
Outcome
$
PTD.passive
$
'0'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'10'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'15'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'20'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'25'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'30'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Table C, supplement:
View
(
OR.list
$
Outcome
$
PTD.tot
$
`20`
)
View
(
OR.list
$
Mort6mo
$
PTD.tot
$
`20`
)
# Table D, supplement:
View
(
OR.list
$
Outcome
$
PTD.active
$
`20`
)
View
(
OR.list
$
Mort6mo
$
PTD.active
$
`20`
)
# Table E, supplement:
View
(
OR.list
$
Outcome
$
PTD.passive
$
`20`
)
View
(
OR.list
$
Mort6mo
$
PTD.passive
$
`20`
)
This diff is collapsed.
Click to expand it.
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment