Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
I
ICP burden
Project overview
Project overview
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Commits
Issue Boards
Open sidebar
Cecilia Akerlund
ICP burden
Commits
048d87d1
Commit
048d87d1
authored
Jun 11, 2024
by
Cecilia Akerlund
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Upload New File
parent
91613438
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
168 additions
and
0 deletions
+168
-0
ICP_burden_multivar_201006.R
ICP_burden_multivar_201006.R
+168
-0
No files found.
ICP_burden_multivar_201006.R
0 → 100644
View file @
048d87d1
rm
(
list
=
ls
())
library
(
dplyr
)
library
(
tidyr
)
library
(
ggplot2
)
library
(
gridExtra
)
nas
<-
c
(
""
,
NA
)
f
<-
"C:/Users/Cecilia KI/Dropbox/Cecilia/ICP burden/ICP_tempdata/"
Baseline
<-
read.csv
(
"C:/Users/Cecilia KI/Dropbox/Cecilia/ICP burden/Baseline.new_200625.csv"
,
stringsAsFactors
=
FALSE
,
na.strings
=
nas
)
#Created in script ICP_burden_preparation_200225.csv
Baseline
<-
Baseline
%>%
mutate
(
Mort6mo
=
ifelse
(
GOSE6mo
==
1
,
1
,
0
),
Outcome
=
as.factor
(
ifelse
(
GOSE6mo
%in%
c
(
1
,
2
,
3
,
4
),
"UNFAV"
,
"FAV"
)),
icp.mean
=
ifelse
(
is.na
(
icp.mean
),
icp.evd.mean
,
icp.mean
),
icp.median
=
ifelse
(
is.na
(
icp.median
),
icp.evd.median
,
icp.median
),
cpp.mean
=
ifelse
(
is.na
(
cpp.mean
),
cpp.evd.mean
,
cpp.mean
),
cpp.median
=
ifelse
(
is.na
(
cpp.median
),
cpp.evd.median
,
cpp.median
))
load
(
file
=
paste0
(
f
,
"200625/PTD.RData"
))
# TIL.max added as predictor: ---------------------------------------------------------------------------------------
# Logistic regression model for time in red zone: ----
# Univariate regression:
uni.rz.outcome
<-
glm
(
Outcome
~
rz
,
family
=
binomial
(),
data
=
Baseline
)
exp
(
uni.rz.outcome
$
coefficients
)
#OR
exp
(
confint
(
uni.rz.outcome
))
# confidence interval 95%
summary
(
uni.rz.outcome
)
$
coefficients
[
2
,
4
]
# p value
uni.rz.mort
<-
glm
(
Mort6mo
~
rz
,
family
=
binomial
(),
data
=
Baseline
)
exp
(
uni.rz.mort
$
coefficients
)
exp
(
confint
(
uni.rz.mort
))
summary
(
uni.rz.mort
)
$
coefficients
[
2
,
4
]
# 6 month mortality / unfav/fav outcome:
mort.model
<-
glm
(
data
=
Baseline
,
Mort6mo
~
rz
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
binomial
())
fav.model
<-
glm
(
Outcome
~
rz
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
)
summary
(
mort.model
)
summary
(
fav.model
)
OR.mort
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
mort.model
),
confint
(
mort.model
)))),
2
)
OR.mort
$
p
<-
round
(
summary
(
mort.model
)
$
coefficients
[,
4
],
3
)
OR.mort
<-
OR.mort
%>%
mutate
(
Variable
=
rownames
(
OR.mort
),
"OR, 95% CI"
=
paste0
(
OR
,
" ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
OR.fav
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
fav.model
),
confint
(
fav.model
)))),
2
)
OR.fav
$
p
<-
round
(
summary
(
fav.model
)
$
coefficients
[,
4
],
3
)
OR.fav
<-
OR.fav
%>%
mutate
(
Variable
=
rownames
(
OR.fav
),
"OR, 95% CI"
=
paste0
(
OR
,
" ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
View
(
OR.mort
)
View
(
OR.fav
)
# Time in red zone above +2sd:
mort.model
<-
glm
(
data
=
Baseline
,
Mort6mo
~
rz.ub
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
binomial
())
fav.model
<-
glm
(
Outcome
~
rz.ub
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
)
OR.mort.ub
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
mort.model
),
confint
(
mort.model
)))),
2
)
OR.mort.ub
$
p
<-
round
(
summary
(
mort.model
)
$
coefficients
[,
4
],
3
)
OR.mort.ub
<-
OR.mort.ub
%>%
mutate
(
Variable
=
rownames
(
OR.mort.ub
),
"OR, 95% CI"
=
paste0
(
OR
,
" ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
OR.fav.ub
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
fav.model
),
confint
(
fav.model
)))),
2
)
OR.fav.ub
$
p
<-
round
(
summary
(
fav.model
)
$
coefficients
[,
4
],
3
)
OR.fav.ub
<-
OR.fav.ub
%>%
mutate
(
Variable
=
rownames
(
OR.fav.ub
),
"OR, 95% CI"
=
paste0
(
OR
,
" ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
View
(
OR.mort.ub
)
View
(
OR.fav.ub
)
# Multivariate logistic regression model: ----------------------------------
# Add to baseline, PTD active/passive/tot at thresholds
Thresholds
<-
c
(
0
,
10
,
15
,
20
,
25
,
30
)
# View(PTD$tot$PTD.long)
PTD.tot
<-
spread
(
PTD
$
tot
$
PTD.long
%>%
select
(
gupi
,
Threshold
,
mmHgH
)
%>%
filter
(
Threshold
%in%
Thresholds
),
Threshold
,
mmHgH
)
colnames
(
PTD.tot
)[
2
:
7
]
<-
paste0
(
"PTD.tot."
,
colnames
(
PTD.tot
[
2
:
7
]))
PTD.active
<-
spread
(
PTD
$
active
$
PTD.long
%>%
select
(
gupi
,
Threshold
,
mmHgH
)
%>%
filter
(
Threshold
%in%
Thresholds
),
Threshold
,
mmHgH
)
colnames
(
PTD.active
)[
2
:
7
]
<-
paste0
(
"PTD.active."
,
colnames
(
PTD.active
[
2
:
7
]))
PTD.passive
<-
spread
(
PTD
$
passive
$
PTD.long
%>%
select
(
gupi
,
Threshold
,
mmHgH
)
%>%
filter
(
Threshold
%in%
Thresholds
),
Threshold
,
mmHgH
)
colnames
(
PTD.passive
)[
2
:
7
]
<-
paste0
(
"PTD.passive."
,
colnames
(
PTD.passive
[
2
:
7
]))
Baseline
<-
left_join
(
Baseline
,
PTD.tot
,
by
=
"gupi"
)
Baseline
<-
left_join
(
Baseline
,
PTD.active
,
by
=
"gupi"
)
Baseline
<-
left_join
(
Baseline
,
PTD.passive
,
by
=
"gupi"
)
# OR: ---------------
OR.fcn
<-
function
(
x
)
{
y
<-
round
(
as.data.frame
(
exp
(
cbind
(
OR
=
coef
(
x
),
conf.int
=
confint
(
x
)))),
5
)
y
<-
y
%>%
mutate
(
Variable
=
rownames
(
y
),
p
=
round
(
summary
(
x
)
$
coefficients
[,
4
],
3
))
y
<-
y
%>%
mutate
(
"OR, 95% CI"
=
paste0
(
OR
,
", ("
,
`2.5 %`
,
"-"
,
`97.5 %`
,
")"
))
%>%
select
(
Variable
,
"OR, 95% CI"
,
p
)
return
(
y
)
}
OR.list
<-
list
()
exp
(
summary
(
glm
(
Mort6mo
~
PTD.tot.0
,
data
=
Baseline
,
family
=
binomial
()))
$
coef
)
mean
((
Baseline
%>%
filter
(
Mort6mo
==
0
))
$
PTD.tot.0
,
na.rm
=
TRUE
)
# Total PTD:
OR.list
$
Mort6mo
$
PTD.tot
$
'0'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'10'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'15'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'20'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'25'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.tot
$
'30'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.tot.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Active PTD:
OR.list
$
Mort6mo
$
PTD.active
$
'0'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'10'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'15'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'20'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'25'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.active
$
'30'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.active.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Passive PTD:
OR.list
$
Mort6mo
$
PTD.passive
$
'0'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'10'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'15'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'20'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'25'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Mort6mo
$
PTD.passive
$
'30'
<-
OR.fcn
(
glm
(
Mort6mo
~
PTD.passive.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Total PTD:
OR.list
$
Outcome
$
PTD.tot
$
'0'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'10'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'15'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'20'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'25'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.tot
$
'30'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.tot.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Active PTD:
OR.list
$
Outcome
$
PTD.active
$
'0'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'10'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'15'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'20'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'25'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.active
$
'30'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.active.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Passive PTD:
OR.list
$
Outcome
$
PTD.passive
$
'0'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.0
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'10'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.10
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'15'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.15
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'20'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.20
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'25'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.25
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
OR.list
$
Outcome
$
PTD.passive
$
'30'
<-
OR.fcn
(
glm
(
Outcome
~
PTD.passive.30
+
Age
+
GCSMotorBaselineDerived
+
PupilsBaseline
+
TIL.max
,
family
=
"binomial"
,
data
=
Baseline
))
# Table C, supplement:
View
(
OR.list
$
Outcome
$
PTD.tot
$
`20`
)
View
(
OR.list
$
Mort6mo
$
PTD.tot
$
`20`
)
# Table D, supplement:
View
(
OR.list
$
Outcome
$
PTD.active
$
`20`
)
View
(
OR.list
$
Mort6mo
$
PTD.active
$
`20`
)
# Table E, supplement:
View
(
OR.list
$
Outcome
$
PTD.passive
$
`20`
)
View
(
OR.list
$
Mort6mo
$
PTD.passive
$
`20`
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment